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Abstract

As the oceans absorb anthropogenic CO, they become more acidic, a problem termed
ocean acidification (OA). Since this increase in CO, is occurring rapidly, OA may have pro-
found implications for marine ecosystams. In the tamperats northeast Pacific, fisheries play
key economic and cultural roles and provide significant employment, sspecially in rural
araas. in British Columbia (BC), sport (recreational) fishing generates more incomea than
commercial fishing (including the expanding aquaculture industry). Salmon {fished recrea-
tionally and farmed) and Pacific Halibut are responsible for the majority of fishery-ralated in-
come. This region naturally has relatively acidic (low pH) waters dus to ocean circulation,
and so may be particularly vuingrable to OA. We have analyzed available data to provide a
current description of the marine ecosystem, focusing on vertical distributions of commaer-
cially harvested groups in BC in the context of local carbon and pH conditions. We then
evaluated the potential impact of OA on this temperate marine system using currently avail-
able studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3
{whera most local fishery-income is generated), little is known about the direct impact of
0A, and more importantly about the combined impact of multi-stressors, like temperature,
that are also changing as our climate changes. Thera is evidence that OA may have indirect
negative impacts on finfish through changeas at lowear trophic levels and in habitats. In partic-
ular, OA may lead 1o increased fish-killing algal blooms that can affect the lucrative salmon
aquaculture industry. On the other hand, some specias of locally farmad shelifish have
been well-studied and exhibit significant negative direct impacts associated with OA, espe-
cially at the larval stage. We summarize the dirsct and indiract impacts of OA on all groups
of marine organisms in this region and provide conclusions, ordered by immediacy

and certainty.
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Introduction

Fossil fuel burning and changes in land use by humanlkind have increased atmospheric carbon
dioxide (CO;,) at an unprecedented rate, causing our climate to change [1]. A significant por-
tion of this anthropogenic CO, { ~ 30%; [1]) has been absorbed by the ocean. When CO, enters
the ocean it combines with water (H,0), resulting in an increase in the concentration of hydro-

10 changes, our oceans become more acidic due to anthropogenic contributions, a problem
(038Y i rs had i . . . . ~
Strategy n\juﬁ, fundmg. The funders .jac. no rolle..n termed Ocean Acidification (OA) [5].
udy design, data collection and analysis, decision to
publish, or preparation of the manuscript.

While anthropogenic atmospheric CO; dominates contributions to OA on a global scale,

other anthropogenic sources may be significant on a local scale [#]. For example, acid rain
Competing Interssts: The authors have daclared

s ’ from vehicle emissions and industry cause an increase in ocean acidity, which is likely relevant,
that no competing interests exist.

Any addition of organic carbon to the
ocean, such as sewage, decomposes to dissolved inorganic carbon (DIC), and increases acidity.

at least near {and downwind of) urbanized regions [7].
Agricaltural run-off provides nutrients which then fuel (an anthropogenic) increase in produc-
tion of organic carbon in the ocean [8], again increasing acidity.

Aquatic acidity is most commonly reported as pH. However, pH is difficult to determine ac-
curately in saltwater because of the additional ions present in solution [8]. It is closely linked
with carbonate chemistry in the ocean, which is complex. To quantify the carbon state (i.e. the
concentration of each chemical form of DIC present) in seawater, two of four measured param-
eters——DIC, pH, total allalinity (TA)}, and partial pressure of CO; (Peoy)—must be known, in
addition to temperature and salinity. To be more accurate, phosphate and silicic acid concen-

ciated with low pH (or high Pre,), more information, e.g. TA, s required to be quantitative.
The carbon state is relevant to biology. Most of the DIC in the ocean occurs in the form of
bicarbonate (HCO; ) and carbonate (CO;"’)? with less than 1% in the form of CO,. When pH
decreases, the balance between HCO; and CO? changes so that there is less CO?. This shift
has important implications for plants and animals that build calcium carbonate (CaCOj struc-
1.

mon in biological structures. The aragonitic form is more soluble than calcite given the same

tures {e.g. shellfish, corals) [12]. Two mineral forms of CaCO; (aragonite and calcite) are com-

is undersaturated with respect to CaCO; when the chemical rate of dissolution exceeds the rate

of formation [15]. For organisms that precipitate CaCOs, decreasing £2 means that more energy

Marine organisms are also affected by carbon state (defined above) and OA in other ways.
All marine animals need to rid themselves of metabolically produced CO, through respiration.
The effectiveness of this removal is dependent, in part, on the ambient Peg, of the medium {e.

understand and predict biological impacts, an increasing number of experiments have been
completed that attempt to emulate future ocean conditions in the laboratory. Experimental
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recentiy an internatianaﬁy accepted guide has been publi@hed that describes the techniquee
atmosphelu PCO? (~400 ;aatm at the time ot wntmg) or the a«;hmatad current globai average
pH of the surface ocean, which is 8.1 [3]. However, marine organisms in the natural environ-
ment may experience values that are significantly different depending on location and the
depth that they occupy.

In the ocean, DIC (and Pro;) generally increase with depth while pH decreases. In other
words, low pH conditions naturally occur at depth. This partitioning of inorganic carbon to-
wards deeper parts of the ocean is due in large part to the ‘biological pump’ that allows the
ocean to hold more carbon {22]. Photosynthesis in the surface draws down DIC {which in-
creases pH) and produces organic forms of carbon. Sorne of this organic carbon falls to deeper
levels, where it decays back to DIC (decreasing pH).

British Columbia—oceanography
Britit;h (’(}?umbia (BC} makes up 27,000 km {17,000 mi) of the temperate northeast Pacific

that are hnntmg to phympldnl\iun growth and S0 cause high primary pruduuion that increases
pH at times. In fact, the WCVI enjoys the highest productivity of any zone on the northeast Pa-

cific coast [38]. Consequently, present-day ranges in pH in the surface mixed layer along the
outer BC coast span a remarkable range (7.8-8.4; Fig. 2). The low end of this range is signifi-
cantly lower than the benchmark of present- day average global surface ocean pH (8.1).

In protected waters (e.g. Strait of Georgla, [
WCVIL These data show similar (or larger) ranges in surface pH and Pgo, (anpublished data,
DI) which are aleo similar to Values; f(}und just to the south in the pmtutad waters (}f Pu%d

1) less data are available relative to the

British Columbia—fishery

Fisheries and aquaculture play an important role in the BC economy, contributing over $650
million (we quote all doﬂar values in Canadjan dOHars) to the provincial gross domestic prod-
,,,,,, g, mainly for salmon and Pacific Halibut,

is resp@nsibk for appmmnmidy 50% of this contribution, while the wild {or capture) fishery
makes up ~ 15% and aquaculture ~ 10%. Marine ecosysterns also play critical cultural roles in
BC and their monetary value to tourism is only partially included in these totals (through sport
fishing).

Over the past 20 years the wild fishery has declined in terms of both its contribution to the
BC GDP and employment, although some individual components are increasing {e.g. prawns,
Geoduck Clam Paciﬁa Halibut) Meanwhile aquaculmre has near?y tripled its contributmn to
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Fig 1. British Columbia {BC) coastline and bathymetry (isobaths in mefres: thin grey—100, 200, 300, . ., 1000, 1250, 1500, 2000, 2500; thick blue—
200, 500, 800, and 1600}, The continental slope along most of BC comprises steep slopes, especially along the west coasts of Haida Gwail and northern
Vancouver Island. Hecate Strait is largely dominated by shallow waters and a flat seafloor. Sponge resf core protected areas in Hecale Strait and Queen

Charlotie Sound are shaded pink The Straitof Georgia forms a large iniand seathat is heavily inﬂuenced by river runoft ans:i tidal cu rrents. Saltwater finfish
451 Select geamounts
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Predicting biological impacts due to OA is a highly complex problem that has only become
a concern relatively recently (primarily over the past decade). There have been excellent review

timate of the economic impact of OA, centred on the shelifish fishery, in the United States.
However, few studies consider specific ecosysterns, particularly in the context of local pH con-

ditions and natural variability, and none focus on the temperate northeast Pacific.
Here, we examine the potential impact of OA on temperate coastal ecosystems in the north-
east Pacific Ocean, with a focus on BC fisheries. To tackle this issue we:

» assess the response by marine organisins in this region to OA by investigating existing bio-
logical OA impact studies {on local and non-local species) and comparing anticipated
changes in acidity (Peoy) to those currently experienced along the BC coast.

‘We use the best information available at present to address this problem. The quantitative de-
tails, including treatments and measured carbon parameters, of all studies that we used are

surmmarised in 52
to the BC fishery.
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Species Groups
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Fig 3. Dep’i‘h ﬁf-capture expressed as quamiie box piﬁts of dep’th {m}, fmm ﬁsheries and survey data (where avaiiabie} for species gmups

correspgnci to s:iepth zones m Fi
Cods, respectively).

§.pone.0117533 6003
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Methods
Present state of the BC marine ecosystem

Marine organisms were assigned to taxonomic groups and sorted by trophic levels adapted

sponges) to this list as necessary. To evaluate species abundance and distribution within these
groups, we used published literature (both primary and secondary as cited) where available.
‘When literature was not available we consulted Canadian Department of Fisheries and Oceans
ts and Acknowl-

Species depth distributions (Fig. 3) were obtained from DFQ databases (Pacific Biological
Station, Nanaimo, Canada). Depths associated with commercially-canght groundfish {com-
piled by RH, May 1, 2014) and shellfish {(compiled by Georg Jorgensen, May 6, 2014) are
depths-at-capture, most often a mean of the minimum and maximun depths of fishing events

(usually trawl or trap). For the commercial species groups (Fi
on fishing methods specific to each group—Sea Urchins (dive), Fuphausiids (nets}, Sea Cu-
cumbers (dive), Geoduck Clam (dive), Scallops (dive, trawl), Crabs {trap), Squid & Octopus
{dive, trap), Prawns {(trap), Shrimp {(trawl), Pacific Cod {midwater & bottom trawl}, Pollock
(midwater & bottom trawl}, Halibut (bottom trawl), Lingcod (bottom trawl), Sole (bottom
trawl), Dogfish(bottom trawl), Hake (midwater trawl), Arrowtooth (bottom trawl), Rockfish
(midwater & bottom trawl}, Sablefish (bottom trawl). Depths associated with pelagic species
(Herring, Sardines, and Salmon—Chinook, Chum, Coho, Sockeye, Pink) come from two
sources: the WCVI Sardine Trawl Survey (spanning the WCVT, Fig, 1: ~129.14°W to ~124.56°
W, 48.32°N to 51.14°N), which occurs mid-summer and is conducted during the night (data
compiled by Linnea Flostrand, May 8, 2014), and the La Perouse Survey (spanning the BC

1 —-132.89°W to —123.07°W, 43.58°N to 54.64°N), which i3 a daytime acoustic trawl
survey used to verify acoustic targets (data compiled by Jennifer Boldt, May 14, 2014). The two

coast, Fig

surveys did not capture any SARA-listed species. Mean depths-of-capture are summarised by
quantile boxplots where the box represents 50% of the observations, and the region between

Commercial fishing in Canada is regulated by the Fishery Act. Specifically, Section 22

2 mad

(hetp/aws-lols justice prca/eng/repulationsy/SOR-93-53/page-6. hitml) identifies all license

conditions that DFO uses to manage gear, monitoring, reporting, harvesting, allocation, and
catch requirements. DFQ's Pacific Region Animal Care Committee requires animal-use proto-

for stock assessment and sampling from commercial operations where animals are dead or cer-
tain to die. Data used here were collected for stock assessments and are therefore exempt
from protocols.

Local inorganic carbon distributions

Published inorganic carbon data (DIC, TA) from the cuter BC coast in Queen Charlotte Sound

were collected over the continental shelf, slope and offshore, from the surface to 800 m with

greater depth resolution in the top 50 m. The carbonate system was defined from TA and DIC

,,,,,,,,,,,,,,
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Wild species groups

Toothed Whales A
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Trophic level
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l Mesozooplankion Shelled Pleropods

soduck @ Clams « Scallops
Microzooplankion
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Macroalgae | |seagrasses

Farmed species groups

Adlantic Salmon® acific Salmon®
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Sturgeon
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377 Crayfish
Abaione
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Scallops & Other Shelifish  Marine Plants

Trophic level

Oysiers Clams

Acidification effect Landed valug

Likely positive (\3$1G million
X e o

Likely neutral o %1 million
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Possibly negative (low certainty)

LUnknown

,,,,,,,,,,,,

Squares represent species groups that are not commercially harvested. Solid colours represent the likely direct effects of ocean acidification (see itts for
explanations). Stippling refers 1o possible effects. For species marked by an asterisk (*}, colours represent indirect effects, Data and R code for this figure are

fe).

doi:10.137 t/journal pone. 4117533 .g004
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Responses of marine organisms to OA

that occurs in BC, recognizing that uncertainty exists. We also identified the depth distribu-
Fig. 3). Similar
to our description of the local marine systemm, we used published literature where available to

tions that these groups of species occupy, along with associated OA conditions (

assess direct and indirect effects of OA on taxonomic groups. When no publications were avail-

able in this rapidly emerging field, we consulted individuals who presented at recent confer-

ences (in particular 2014 Ocean Sciences Meeting, Honololu HI and 2014 Salish Sea Ecosystem

Conference, Seattle WA}, and we consulted many other experts in their respective fields {cited
s and Acknowledgements).

mate present-day ranges in pH and Peg,; for depth intervals relevant to local marine organisms

(Fig. 2}. We then defined three relative Pegy; levels, which are based on the present-day ranges
’, to group the experimental treatments presented in the literature relative to our local

te 1). For example, Pink Salmon (Oncorhynchus gorbuscha) generally occupy

phic level and group, the amount of information available was variable. For many commercial-
4} excellent data were available (e.g finfish,

Phytoplankton

In the coastal northeast Pacific the predominant class of phytoplankton is diatoms, which are

{4
in our region they appear to be more diverse and occasionally include large numbers of photo-

synthetic dinoflagellates [45, 52]. Coccolithophorid blooms have been directly observed in

Table 1. Terminology used in the text to quantify levels of Prg, used in manipulation experiments.

Terminology Pros

present-day depends on depth range (Fig. &)
teduned 5% presentiay

elevated 2-5x present-day

doi:10.1371/ioumal pone 0117533.1001
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coast [30].
Phytoplankton species that are harmful to higher trophic levels are also common in the re-
gion. Large blooms of diatoms from the genus Psendo-nitzschia occur on the outer coast (e g

} while the dinoflagellate Alexandrium is more prolific in protected locations [38].
Pseudo-nitzschia and Alexandrium produce neurotoxins that bioaccumulate in higher trophic
levels. These toxins can interfere with the reproductive success of fish, scabirds, and mammals

1. They are also responsible for numerous seasonal shellfish
acdfo-mpogccs/ ?ﬂ'mmf-‘"mva n‘im don/biotox/index-eng hi'mﬁ)

duding the BC coast (Figs

& 2), cover an exceptionally iarge range in carbon states and

consequently pH (e.g. [§, 7
most studies have been conducted in the laboratory, often using a single strain of cultured phy-

1) experiments in the field are challenging to complete. Thus,

toplankton. Also, because coccolithophores calcify {(and at least some are easy to culture), they
have been studied disproportionately. We sample a relatively small subset of this body of litera-
ture to summarise results of most relevance to the mixed, often diatom-dominated, community
in the region and briefly describe the current understanding of the mechanisms involved.
Species specific responses by primary producers, including phytoplankton, to increases in
ambient CO; are highly dependent on their carbon-uptake mechanism. Carbon assimilation
relies on the enzyme ribulose biphosphate carboxylase-oxygenase (RuBisCO) to fix CO; [72],

oy

but this enzyme has a poor aftinity for CO; [72, 73]. Over geological times scales (i.e. the last

3.5 billions years), as newer phytoplankion species have evolved, their use of RuBisCO has be-
come more effective [72
[74], to help transport and accumudate CO, to the active RaBisCO site [75]. The most impor-
tant CCM for phytoplankton involves carbonic anhydrase to convert abundant HCO, to the

2]. Some have carbon-concentrating mechanisms (CCMs), e.g. diatoms

Hmiting CO, [7
toms, appear to be carbon-limited under present-day conditions {e.g. [721]).

1. Despite CCMs, many photosynthetic phytoplankters, including some dia-

Because of these limitations in carbon uptake, it is anticipated that OA will increase overall
production, which may provide more food to higher trophic levels. However, this increase does
not appear to be large. Numerous mesocosi experiments, which use natural assemblages, sug-
gest that regardless of species compmﬁmn there may ba at most a 10-30% increase in pr;marg
production due to QA {eg [77-80]
creased carbon to nitrogen (C.I\} ratios in phymp‘iankmm ettectwe?y decraasmg its nutrltlonal
quality [80].

While it is generally agreed that OA is likely to cause shifts in phytoplankton species compo-

sition, it remains unclear what these shifts will be [69]. It is reasonable to expect that species
that do not have effective CCMs will do better than species that are already efficient with

PLOS ONE | DOL10.1371journal pone 0117533 February 11,2015 10/48
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carbon uptake (diatoms in general). For example, the fish-killing raphidophyte Heterosigma
akashiwo relies on passive diffusion to obtain CO,. As a result it responds strongly (increased

prymnesiophiyte Phaeocystis could outcompete diatorns at reduced Pro; even though both
groups have efficient CCMs. Finally, it has been suggested that at least one motile species (.
it (and any species that can take advantage of its absence nearer to the surface) an additional
competitive advantage.

Factors associated with climate change, including OA, are expected to increase the frequen-
cy and severity of harmful algal blooms [88]. In addition, the production of potent neurctoxins

—domoic acid by common and sometimes prolific diatom species of Pseudo-nitzschia, and
saxitoxin by dinoflagellate species of Alexandritzm—Dhas been shown to increase markedly

phore populations {87, 100] and by paleolithic records {101 ].

Phytoplankton synopsis We conclude that the overall impact on ecosysteims and fisheries
due to changes in the phytoplankton community in our region will be negative. While a rmodest
increase in primary production is anticipated (so a direct positive benefit to phytoplankton,

I

4 4
&

4), this increase is not likely to benefit higher trophic levels due to expected shifts in spe-
cies composition (away from diatoms) and decreased nutritional value of the plankton. More
immportantly, the fish-killing alga Heterosigma akashiwo may gain a competitive advantage,
which would seriously threaten salmon aquaculture. In addition, increasing P, has been
shown to alter the mix of neurotoxins produced by genera such as Pseudo-nitzschia and Alex-
andriym to favour the more potent forms, posing a significant threat to higher trophic levels
and the shellfish industry as well as overall food safety.

Macroalgae

Three groups of macroalgae are delineated by their pigmentation: green, brown, and red algae,
all of which are common in BC. In particular, brown algae constitute the majority of the bio-
Brown algae have soft fleshy morphologies, and both green and red algal groups contain spe-
cies with hard, calcified structures. Calcified red algae have two morphologies, crust-forming
on substrate, and erect and branched. Both red and green algae are found in the intertidal and

PLOS ONE | DOL10.1371journal pone 0117533 February 11,2015 11/48
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blade (bmwn, maamalgae (eu g chmmarza:. Macrocystis) that form deme keip forests di(mgg
temperate coasts, common in BC, are the basis of some of the most productive ecosystems on

. These forests provide extensive shelter from predation, desiccation and wave
action, as weli as tood for hundreds of species with representatives from most taxonomic
groups {145
portant for invertebrate species (e.g. urchins and anemones)
Direct effects As with phytoplankton, many macroalgal spec;ee use carbon concentrating

mechanisms (CCMs) to help transport and accumulate the CO, required for carbon assimila-

5]. Calcified red algae provide similar protective structures, that are especially im-

may be more significant at depths where light levels are reduced because energy constrains

ph@[osvmhesis and CCMS are energeticallv expensive, though these effects are likely to be spe—
fdu: tends to be ha1 miful to some macroalgae, reduung the po@mve response to elevated P(O;
[111]. The ultimate effects of OA on photosynthesis and growth of macroalgae will likely de-
pend on interactions with light exposure, UV radiation, and other stressors. There has been
less research concerning reproduction and life stages; however, it has been suggested that OA
will result in reduced gametophyte gmwth of giant keip [

unhke most caiu ring green algae md mver‘rehmtee red aigae depom a htgh magnesium form
of calcite into their cell walis, that is more solubie in acidified water ‘rhan other forms of calcite

Endued effects C hange@ in macroal%d‘i commumtv composition are anticipated given the
diversity of responses to QA among species. In general, non-calcifying macroalgae (especially
those that rehf on diffusion of (’OQ i11‘~;tea.d of (’CMe) are expected to experience increased

sea rch has ma,used on losses of crust~f0r1mng cal uﬁed ied algae in parm,u]ar a,nd repiacemem
with nonwalciﬁfin g turf’-forming al 011 communiﬁe‘; (ie ipecim that reach heigh‘r@ of <15cm

Lffeus under OA remain h1ghly uncertain. Likewise, the eaologlcal effects of pobsfble dechnea

PLOS ONE | DOL10.1371journal pone 0117533 February 11,2015 12/48
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in erect calcified red macroalgae and replacement by fleshy macroalgal species have received
little attention (but see |
En addition to CDm‘thEti(m hubnrorv is another key factor structurmg macr Dalgai commu-

caibonata structures for algal defence {12
creasing grazing on calcified species | 115]. For non-calcified species, OA may increase C:N ra-
tios possibly reducing palatability and hence grazing pressure [115]. However, OA will likely

be detrimental to many herbivores, especially calcified species such as echinoderms and mol-

fuscs (eee bel Ow} witb resulﬁng beneficial effects on some macroalgal species (e.g [128], Medi-

system, which includes the W LV I, OA may result ina Shiﬁ from diverse nearshum commuii-
ties consisting of kelp canopies, understory turf assemblages, crust-forming calcifying algae,
and calcifying invertebrates {e.g. urchins), to communities dominated by kelp and macroalgal
turfs. Where kelp canopies have been lost due to other natural or anthropogenic disturbances
(e.g. indirect effectg of commercial harvest of fish ‘spede@ as found for Iarge regi(ms’ of the

In a,ddl,non to a,ommumty-leve] effects from alter ad a,ompemtmn a,nd herbivory, OA may

slow decay rates of some kelp species including those commuonly found in BC (e.g. bull kelp,

Nereocystis leutkeana), which could indirectly affect detritivore consumption and nutrient cy-
cling [11
availability for consumers in nearshore waters.

,,,,,,,,,, 1]. This delay may result in the accumulation of phytodetritus, possibly reducing food
Macroalgae synopsis The direct effect of OA is hypothesised to be positive on non-calcify-
ing species due to enhanced availability of CO; for carbon assimilation, but negative for calcify-

ing species due to reduced growth and dissolution of protective shells (Fig, 44). Community

composition may shift from calcifying macroalgae species toward non-calcifying species, with
an inhibition in the recovery of depleted kelp populations. However, community-level re-
sponses will depend on the extent of grazing on fleshy, non-calcifying species, possible changes
in grazing due to OA-impacts on invertebrate herbivores, and the expansion of algal turfs. Re-
sponses of benthic communities to OA are highly species-dependent, limiting confidence in
generalisations and extrapolations among regions and studies.

Seagrasses
‘%eagra%ee bekmg to a small gmup (}f marine angimperm@ compri@mg 60 s;pecies' worldwide

mlmfymg Organisms refugm frum the LffLC[S of OA.
In contrast to most macmalgae seagracs cannot take advantagc of the sbundant HCO’
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increased Pog, may foster the growth of seagrass beds, despite worldwide losses of seagrass

ecosysterns due to amhmp%eniﬁ disturbances ak}ng mastal environments [1 However

ry, may resultin mcraas;d grazing pressure undar nutrmsed Pcozh T he emdence for duredmng
phenolics in seagrass under OA is limited and contrary to the trend of increasing phenolics in
terrestrial angiosperms under increased atmospheric CO, [144].

Seagrass synopsis Seagrasses will likely benefit from increased Ppo, because higher DIC
helps them compensate for light limitation; however, a decrease in protective phenolic com-
pounds may offset any benefit due to increased grazing. The net effect of increased OA will
likely be neutral for seagrasses.

Microzooplankton

Microzooplankton (20-200 pm) include heterotrophic protists such as ciliates and non-photo-
synthetic dinoflagellates. Tvpicai ciiiate %enera along the B(‘ coast include S"tmmbidium Tif'z-

Protoperidinium, which féads al,most exclusively on diatoms {1421, and Gwad:nzum En near-

shore waters, micmmﬂplankton can be very abundmt dependm 5 on the time of year and food

Direct effects There are no studies that test the du ect effects of OA on individual microzoo-
plankton species That said, foraminifem are amocboid protis[s tha[ form CaCOs sheﬂs and,

toms was likely responsmin

Microzeoplankion synopsis Based on the limited studies for microzooplankton, we expect
that most species will be unaffected by OA, except through changes to their prey (phytoplank-
ton). Direct QA effects will likely have a negative effect on foraminifera through reductions in
CaC O, shells.

Mesezoapﬁamkmn

] Some species
spmd part of thelr life cycles (thdt mdudes egg pmdum(m) in reidtwe?y detp waters, >300-

500 m {e.g. Neocalanus plumchrus and Calanus pacificus) while others, like Acartia longiremis,
are aiwavs found above ~ 50 m. Zooplankton productivity is variable and appears to be chang-
] with gpaa;s campmm(m deendant on thptrature [
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that prey on them directly, such as Pacific Herring, Pacific Hake, Pacific Sardine, various salm-
on species, and Spiny Dogfish (Sgualus acanthias) [155].
Direct effects Only Calanus pacificus has been studied locally so we include experiments on

copepods found elsewhere from the common genera Acartia and Calanus. Although responses
vides a general indication of possible effects on the mesozooplankton community in
our region.

Most OA related mesozooplankton research involves eggs and/or survival rates within indi-
vidual stages. Egg production rates of adult females appear unaffected by increased Prg; (even

Although impacts on individual life stages may not be significantly different from a control

scenario, the cumulative impacts may be significant. In addition, the studies thus far have been
relatively short-term, and do not consider the possibility for copepods to respond to environ-

Mesozooplankton synopsis For copepod species from the genera Acartia and Calanus,
adult survival rates and egg productions rates appear unaffected by OA, even when
hatching success remains uncertain. Cumulative impacts across life stages are unknown.
Thus, the effects of OA on mesozooplankton will likely be neutral and possibly negative
(Hg 4A)

,,,,,,,,,,,,,,,,,,

Pteropods

In BC waters only three species of pelagic snail, or pteropod, have been regularly observed
out most of the year, generally in the upper 100 m |
blooms (> 1000 m ™) which can dominate the plankton (M. Galbraith, pers. comm,, Institute
of Ocean Sciences, Sidney BC). Clione spp. (naked) is also often present, although at signifi-

241 and occasionally forming strong

cantly lower numbers. These two species are common in the Strait of Georgia and less so in

. Thus, few controlled experiments on live animals have been made

icate feeding structure |}
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until recently, and sample size remains limited. Most of these experiments have bun con-
ducted on (variants of) L. helicing harvested from Arctic and Antarctic waters (52 7 .
‘shalls of dead ptu opods dmolv; in waters unduwturated w 1th rmput to ar %(}mte ( e.g.

of presem day P(
(eg [

2. [‘; I
reduatmn of shell f@rmauon will impact the ptempadb abﬂuy to wnirol buoyanqv and mih-

stand predation {16
maintaining their shells are likely, particularly as temperature increases [17

7], In addition, as P, rises, increased energetic costs associated with
i3], The ability to
cupplv encrgv to pcrform these (and Uthcr) tasks may be suppru:md [178] although some

Ptempod synopsis In summary, there isa citdr cause for concern d‘bout the future of ptero-
pods and the animals that depend on them. Although in the last several decades pteropaods
make up, on average, only about 5% of the average annual zooplankton biomass in BC
waters (M. Galbralth pers com.) thm are an 1mp0rtam ﬁ)od source for mvanﬂe PmI\

ready in our regxcm where amgomte saturation hommns are frequem v shallower thm

21, numbers of the most common pteropod have declined significantly [ £

Molluscs

Mollascs comprise a diverse group of organisms that includes a variety of shellfish as well as
predatore such as squid and ()ctopu@ {and ptempod@ ab(}ve) In the northeast Paciﬁc mussels

The annual landnd \/alue of molluscs harvested from wild and farmed fisheries in BC is $62

million (Fig. 4}, of which 66% is Geoduck Clam (Panopea abrupta). Other major harvested

clams are Manila Clam (Venerupis philippinarum), Native Littleneck Clam (Leukoma stami-
;iea) Bu[[cr Clam (Saxidomus gigﬁntea) and Varnish (Savoury) Clam (Nutallia obscurata)

Lommuuali} —devdoped hybr;d ccﬂiad “Pacific Saaﬂop (_Patmopecten caurinus xyeswemzs} is
used in aquaculture. There is a small but growing mussel industry, no harvest for Northern Ab-
alone (Haliotis kamtschatkana) as it is listed by SARA as Endangered, and minor harvests for
squid and octopus.
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Direct effects Shelled molluscs calcify internally and actively increase pH at that site to do
so, making them directly vulnerable to GA {15, 17]. L arval shells are particuﬂarhf vulnerable
since they are mostly composed of aragonite |
deposit is amorphom CaCO; (the Eeast stable farm (}f CaC 0' . By aduithood, shells are

3]s e.g, oyster ehelii

culture in the northeast Pacrﬁa, relies on han,henes ( often With commlled cond;,nom) o rear
farvae ﬂnt are then di‘;trihuted to gmwer%

calcification by mollusgs rcported ggmﬁmnt mgauu effe cts foﬂowing exposure to increased
CO; levels. Here we summarise experiments performed on species that are found in the north-
east Pacific and elsewhere {e.g. scallops). There have been no studies on Geoduck Clams (de-
spite their commercial importance), or on BC scallop species.

Ezperim ents on fertﬂigaﬁon in Paciﬁc Opyster have pmduced mixed resu? s, Both gperm

howwer, the number of embl"yos
reacbmg the p]emkmmc Dwahgei larval stage dea,hnf:s { 9-20311. Elevated Peg; increases the
number of larvae with shells one d’;y after fertiﬁ@ation (due to an enh ’H’Jf‘fd metaboﬁc mte) vet
decreases it three days aftei
three and 16 days [2 L
Abalone [204] and Bay Scal lop (Mgap&fen irr ﬂdzanc} 1 [

Mowever for N orihern
Abalone from the W ( V1 the pmporuon of mntamorphosmg larw ae is unaffected [204]. In-
creased abnommhues in larvae have bem observed unduf elevated chz in Paunc Oybter

hted to mlafu ation md c‘,rtofskeletcm pmduchon can be %eveielv suppre%sed under hlgh PCQL
{211]. For Northern Abalone larvae, settlement (attachment to the experimental container) is
unai‘fea ted by PCQL [404] Additional eﬁects on other ]arvae- include decreased O, consumption

Shel}, gmwth and calcification of ]memle and eadu]t molluscs under QA remains uncertain
due to limited studies with contrasting results. Pacific Oyster juveniles exhibit increased expan-
sion of shell area (but not thidmess) Lmder reduced pH despite dedinec in O, consump tion
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Zhﬂ((mg ‘aaallaps (C :’zlamys fmre: i) under reduced pH iz -]u

The byssal threads that mussels use to attach themselves to rocks or vertical lines in aquacul-
ture must be robust so that they do not drop off or get ripped off. The threads of the common
mussel (Mytilus trossulus) have been shown to weaken under elevated Py, [215], although
they may be more sensitive to temperature during during short-term fluctuations typical of
localinlets (E Newcomh Univer@ity of ‘\Na%hmgton, Seattle per% comnt. )

erted by the dappmg undxr devatLd Peoys, whmh could reduce the saaﬂops abﬂﬁy to
escape predators.

As above, the larval stage is vulnerable to OA. South of BC, at a hatchery for Pacific Oyster
in Oregon ( U‘; A), carb(mate levels experience 1&1‘;76 ﬂuctuati(ms due to %;tmn;7 coastal upweliin;?

futs in a natural system, O‘ivmpm Ovyster larmt were reared undtr different P, levels, then
transferred to field sites after metamorphosis [206]
ferent between the two larval treatments, but the elevated-Pe, larvae yvielded smaller juveniles,
sucge‘;tmg that they suffer 1rrevere1bie damage (e.g. energy deficit, abnormality, inability for

1. Juvenile survival was not significantly dif-

Endzrect effeets Ch fmges in species composition can be expected under OA. Few studies ex-
plore these changes for molluscs, however it has been shown that Eastern Oyster larvae (Cras-
sostrea virginica) have higher survival rates than Bay Scallops under elevated P, which is the
opposﬂ'e of the present—day P(—-m result { and in the absence of brown tides—in this study

and Other sheﬂﬁsh was not inv cstigdted,

OA may increase the valnerability of shelled molluscs to predation by thinning their protec-
tive shells and may also cause food web shifts. For example, Boring Sponges (Cliona celata) can
bore twice the number of holes in Bay Scallop shells, and remove twice the weight of shell, at
pH 7.8 compared to pH 8.1, despite taking longer to attach themselves to the shells [220]. Neg-
ative ﬁmpdcts on m(ﬁlusag could also have hrga umntmded cons;quemes for other gpaues

OA o1 moliuscs may have detmmentai affaa,ts at the ecosystem l,ewei.

Squid and ﬁctﬂpus In EC, there are at least 30 species of squid and eight %pecies of octopus
Squjd (Lolzga c)paie.scms} and Northem Gmm Pacnﬁa, Octopus (Entemampus doﬂemz ). Smuiar
to the otoliths of fish (sce below), squids have internal calcified structures called statoliths used

for sensing gravity and movement
mpean Squid Loiig() Vuiévaris are signiﬁcanﬂv hrger Ehan those formed under present-day
te 1), Kaplan ef al. [225]

Under elevated Pro; statoliths in embryos of the Eu-

| observed
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reduced surface area, malformation, and abnormal crystalline structure in statoliths of Atlantic
Longfin Squid, Doryteuthis pealeii. Aside from calcification, elevated Peg; also leads to in-
creased heavy metal retention in the pmtective e%t;heﬁs and changeg to the bicaccumulation

bolic rates in pelagic squids (e.g [2258]). The u tmnte effect on ﬁmees is not kn oWl
Mollusc synopsis We conclude that the effects of OA on shelled molluscs will be negative
based on available studies on oysters, scallops, abalone and mussels (Fig. 4). These negative ef-
fects occur at various life-history stages, and go bevond direct effects on calcification of larvae,
e.g. reduced oxygen consumption and feeding rates of larvae and delayed behavioural re-
sponses of adults. It is generally anticipated that effects on larval survival rate and reproduction
rate will direcdy influence popula[ion size, population dictribution and communitv structure

Sponges and Coldwater Corals

Sponge reefs are globally unique to the northeast Pacific coast {228 | and all four groups of

cold-water corals: octocorals, stylasterids, stony and black corals, are present in the region.

They occur where pmduc[ivitv and water ﬂow are high (e g they are especiaﬂy dense on sea-

321, Kim Conway, pers. comim., Pacific Geoscience Centre, Sidney, BC) and so we
have u:md ihesx data and the expertise of others to provide our own general description
(below). Sponges and cold-water corals form Important habitat for many marine organisms in-
cluding speciee (}f fiﬂ;h tha.t are comumercially important (e.g. the rockfish Pacific Ocean Perch)

).

Tlm col},ecnon is hkel,y domma‘ned by sghceour, spcmgas, and mo]ated stands of ﬂex;,bie wmis
with partly organic skeletons (octocorals), more specifically members of the diverse group
Alcyonacea (e.g. large tree form coral) and pennatulaceans (sea pens and whips). Alcyonacea
and solitary glass spnnge‘; occur on bedrock, nnmlv deeper than ~ 200 m, while pennamla~

Direct effects OA studies have focused on stony corals, primarily Lophelia pertusa, which is
entir LEV ar 4;70111‘(1(: ihLy show an incr Lased entrgatlc cost for calcification in L. perfusa with

precipitate aragonite as WLH as L&ELHE‘ [ 250
been studied with respect to OA to date. Likewise, there are no OA studies specific to

]. How;ver, nelthar octou)rals nor stylasttrlds have

glass sponges.
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Sponge and coral synopsis The OA response of the cold-water corals most common in our
mgion {octocorals) ha‘s not vet been studied. While the skeletons of thege corais; are parﬂy or-

Echinoderms

Zchinoderm@ form a marine set (}f invertebrate animals; with ~ 7000 known gpecieﬂ; worldwide
[ ,,,,,,,,,, 3. Ehe uhmaderms comprise five Llagseg (i) echinoids (sea uthms md sand doﬂdrs,, (i)
asteroids (sea stars), (iii) holothurcids {sea cucumbers), {(iv) crinoids (sea lilies and feather
*;mri) and (v) ophiumid@ (brittle %mri) A few are considered to be “keystone” species, such as
5], which is common along the BC coast. Echi-
noderrm modva ecosystems (eg. hy mixing and transforming sediments, grazing kelp forests,
preying on mussel beds) and provide food for carnivorous fish, shellfish, and marine manmmals
(e.g sea otters prey heavily on sea urchins and sea cucumbers). In addition, sea stars and sea ur-
chins act as important grazers in the sub-littoral zone [256].

Birect eﬂeﬂs Green and Rul Sna Urchins (St? ang}]ocemrmm draeb(u hzmsis and S fmnczs—

species (see &
occarred. Studm on shdl thickness are cenfoundtd b} cffuis of chet and experiment length
58], but urchins have higher growth rates when fed on calcifying algae and may derive
some portion of essential elements {e.g. calcium, magnesium) from the algae [258]. Therefore,

sea urchins may suffer as the proportion of calcifying macroalgae in their diet declines due to
direct OA effects on these algae (see Macry

chins have shown an ability to adapt to elevated Peogs (T
new ()A ﬁ(mdjtiang s;pecies may suffer from 1ife~cvde carry-over effects. For instance, Dup(mt

¢ section above). In long-term studies, sea ur-

2 1); however, in the transition to

mﬂuence ieprodm,ncm in echmodei ms. Fo; emmple, as Pc.oz increases under OA_‘ htgbei
sperm concentrations are necessary to achieve high fertilisation success in the sea urchin
S. franciscanus, and the egg’s mechanism for blocking fertilisation by multiple sperm cells

becomes slower [2

A nusmber Uf smdies have used genetic markers to infer the possible physiological effects of
“abie). O'Donnell ef al. [261] measured the change in expression of
a molecular hdpcr promn in 8. franciscanus and suggested that the ability to handle tempera-
ture stress would be reduced under OA. Todgham and Hofmann [263
~ 1000 genes of the sea star S. purpuratus and found reduced expression under elevated Prg;

measured changes in

in four categories—biomineralisation, cellular stress response, metabolism, and apoptosis {cell
death) Aieo for this species e? >vated P(O; triggered changes in 40 functi(mal classes of pro-

Elsewhere, a mngle study tound tha.t sperim motility Di’ a rttﬁdwdlmg,, sea cugumbu species

(Holothuria sp.) was impaired at pH values <7.7 [264]. Elevated Pcp; and temperatures have

been shown to have positive and additive effects on the relative growth of the keystone sea star
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[Sadiv}

Pisaster ochraceus [265]. Under increased Pro,, calcification is reduced [263]; however, growth

rate remains unchanged as the endoskeleton is primarily composed of soft tissue with relatively
small calcareous elements for rigidity and protection. Brittle stars (ophiuroids) are commonly

tound in the region, but the effects of QA have only been studied in species found elsewhere. In
the eastern Atlantic Ocean, keystone brittle star Ophiothrix fragilis was found to be especially

|, with 100% mortality of larvae at pH 7.9 vs. 30% mortali-
ty in the control (pH = 8.1). Finally, while Dupont et al. [25
to date are relatively robust to OA effects, they conclude that the overall impact of OA on this

sensitive to small changes in pH [2¢

group will be negative and suggest that associated ecosystem impacts may be more severe.
Indirect effects Declines in some echinoderms may affect the predators that depend on
them, but ecosystem effects remain unknown. FPor example, on our coast, various nearshore
rockfish and nomerous flatfish prey on ophiuroids [287], although they only form an impor-
tant component of the diet for China Rockfish (Sebastes nebulosus), Flathead Sole (Hippoglos-
soides elassodon), and Southern Rock Sole (Lepidopsetta bilineatus) [2 Additionally, the
deep-water rockfish Longspine Thornyhead (Sebastolobus aitivelis) relies on brittle stars for a
targe proportion of its food [268]. In the eastern Atlantic, the inevitable decline in pH may lead
to the disappearance of the keystone brittle star O. fragilis; the impact on the ecosystem is not

[k}

Echinoderm synopsis Although many echinoderms have not been studied, the existing evi-
dence indicates significant negative effects due to OA, especially at early life stages. Thus, we

suggest that this group will be affected negatively . Of more concern are the anticipat-

ed negative impacts on ecosystems, e.g. declines in the population of a keystone species like the
Purple Sea Star would have wide-ranging effects on the food web.

Crustaceans

Clt‘s (2701, shrlmps prawns md crabs [271 ]. Copepods (sw i\fiu;f) D) Janmiim ) and knli forma

substantial biomass in the oceans and provide an important source of food for upper trophic

levels in temperate marine foodwebs and act as important grazers {e.g., [272]). Crabs are found

in the upper 50 m, while adult prawns (Pandalus platyceros) and adult shrimp (mainly Smooth
Pinkmpandalm jm‘dani and ‘%idegtripemPﬂndai’opsiﬁ dicpar) are deeyer ( ~ 100 m and 120 m,

{ ~ $40 million, }Bw /:-) [34

,,,,, I B Rl

with Dungcnub (me (Lm!cer magmter} bemg the most 1mportant wmmerudl spcuea
considered to be unaffected b} OA in idu evidence suggests that this proiuuw covering actu-
ally serves as a buffer to the corrosive nature of OA, and some crustaceans can use the increased
|. This enhancement of the
%ection) and is Iike?v due to

DIC in seawater to fortify their shells through calcification [275

shell contrasts with shell dmoiunon in moliuso, ( see Mokl

spﬁe the advantaga of 'ioccﬂased pH-reg}uEanon, the ca.‘iuhcatmn resp(mse appears to depmd on
a variety of additional factors: external organic coatings, skeletal mineralisation composition

(e.g magnesitum content in calcite}, and the degree to which amorphous CaCOs (precursor to
calcite/aragonite shells) is utilised {27

PLOS ONE | DOL10.1371journal pone 0117533 February 11,2015 21/48

ED_002660K_00014749-00021



ONE Effect of Ocean Acidification on Coastal Northeast Pacific Ecosystemns

Crustacean species ability to deal with increasing OA also depends on life-history strategies
and habitat |
estuarine) tend to utilise the oxygen-transporting protein haemocyanin, which also confers ad-
ditional buffering capacity against high H” concentrations. Sedentary species or those in stable
environments {e.g. deep-sea or polar) tend to have less haemocyanin and consequently less
buffering capacity. The latter group relies more on HCO, buffering and is probably more sen-

Active gpecies or those in highly fluctuating environments (e.g. intertidal or

Recent studies on Alaskan King Crab (AKC, Paralithodes camischaticus) and Tanner Crab
(TC, Chionoecetes bairdi) in Alaskan waters highlight the vulnerability of the early life stages to
OA [2”“ 2?38] For AKC Lﬂ'lbﬁ”‘]()% and larvae, OA pmduus largper embrvo% (but not iar;,,u

3R mth 14)()%

kan crabs ( dec,rea,sed c,cmdm,on mdex in AKC but not TC and decreased calcium content in TC
but not AKC) suggest that AKC puts more energy into osmoregulation and calcification than
does TC {279]. Additionally, there is some preliminary evidence that adult AKC females fail to

hatched nduphl to ihe fm;l ieedmg bidgt {Anna M&Ldskey, pers. comm,, Umwrsm of Aldskd,
Fairbanks AK). Also, under higher Prq, the Antarctic keill species, Euphausia superba, experi-
ences ingestion rates 3.5 times highcr than those under present-day conditions, and consistent-

| though s%mﬁLant effects have
| he afblhty to toierate OA al@o de-

of mlmte, which hdps protect decapods from mmrobml attack. hnally, stock assessment mod—
els that incorporate reduced recruitmen[ survival asa function of OA cuggest that there can be

Crastacean synopsis benemﬂy , the crustaceans are cxpmt@d o be sensitive to OA E’ﬁﬁ’ftb at
eariy life avcle stages’ while available studies ‘su%eet m'med results for aduite However, many
mantal an(}mahts in embryos and larvae cccur at raduaad pH, whuh may affect the fitness of
juveniles and adults; however, the effects are species-specific and phenotypic adaptation is not
known. Additionally, changes in growth rate and calcification may increase the susceptibility
to predation, and delays in development may decouple life cycle timing between larval release
and optimal foraging conditions.
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Fish

In BC coastal waters, there are over 300 species of marine fish {292, 223]. The taxonomic
groups represented in BC include jawless fish (e.g. hagtish (270~1010 m)), cartilaginous fish (e.
g ratfish (50-380 m), dogfish (50-430 my), sharks (90-1020 my}, skates (50-860 m}), and bony
fish. The latter group includes important contributors to BC fisheries—Pacific Herring (Clupea
pallasi, 5-170 m), salmon {five species of Oncorhiynchus, mostly in the surface 50 m but some
species deeper than 100 m), Pacific Hake (Merfuccius productus, 80-700 m), Pacific Cod
(Gadus macrocephalus, 50-300 m), Walleye Pollock (Theragra chalcogramma, 50-300 m),
rockfish (at least 36 species of Sebastes {70-470 m) and two species of Sebastolobus (160~-1010
m}), Sablefish (Anoplopoma fimbria, 70-970 m), Lingcod (Ophiodon elongatus, 50-310 m),
Arrowtooth Flounder (Atheresthes stomias, 60-600 m), soles and flounders { ~ 18 species, 50~

860 m), and Paciﬁc Halibut ( Hippoglossz;s stenolepz’s 50-490 m) Depth dis;tributiam for valu-

active ﬁeh exh;hﬂ: transient ei evated metabﬂhc rates md hﬂghly mnab]e extracel 111 tar C O» and
proton concentrations. Acid-base imbalances are regulated by specialised gill epithelia, which
compensate for pH disturbances caused by exposure to increased environmental P, [296]
Ahh@ugh sofne StU(th suggest that aerobic performance of tropical fishes may decline undnr
;,), detrimental effects were not found in a temperate species, Atlan-
951).

Eh@ E’ﬁﬁ’ftb of lake acuhﬁmuon on diadromous fish (those migrating between marine and
fresh water) are well known, but using these observations to suggest OA effects is potentially
mi@ieadin;,, due to {i) idrge phvsmahtmicai dlfterances between fresh and audﬁﬁad marine wa-

As with the invertebrates, OA effects in fish are expected to occur during the vulnerable de-
velopmental stage, and these effects appear to be species specific. The acid-base regulatory
mechanisms of the larval stage remain mdimmmry until gﬂ]@ have formed and respiration

351 Dmpﬂe thue bcmgn Cff[(,ib, researchers have found some dcvdupmmml anomahcb
lmnke and Clemnmesen [305] showed an inverse relationship for Atlantic Herring between
Peos and the ratio RN A/DNA at hatchin;?, poten ﬁally reducingp pmtein biogyn thesis and

and gut of Atlantic Cad larvae undar elevated Pcoz Baumann et al. E
creasing Pop, caused a 74% reduction in survival and an 18% reduction in length of embryos

damonstraud that in-
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of a ubiquitous estuarine fish called Inland Silverside (Menidia beryilina). Any significant de-

velopmental effect could alter the abundance and diversity of marine fish populations.
Otoliths (ear bones) are aragonite-based structures that fish use to sense acceleration and

orientation. In some species Dto‘iiths gr(}w 3arger when larval fish are exposed to elevated Prgyy
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bthd‘« ioural responses hd‘«L ruenﬂy be en doaumented at tkv&hd PC,O; f@r ldr» ae of tmplcal
reef fish. In particular, behaviour to olfactory, auditory, and visual cues changes when larvae
are selecting habitats and responding to predators [311-315]. Additionally, elevated Prg; re-

duces learning abﬂitiec related to predator avoidance and changes the propmsﬂv of larval

Reidtwe?y few studies have 11’1V£‘§f1§3dttd bahavioura? changes to OA in temperate species

Ty

(three exceptions being [320-322]), and none have examined commercially important species
in BC waters. The larvae of Threespine Stickleback (Gasterosteus aculeatus), a species found in
marine and fresh water on the BC coast, exhibit behavioural disturbances (e.g. reduction in
boidne@s and curiosity), fompromised learning abilities, and declines in lateralisation when

of this species, which is expac,ted to confer enhanced acclimatisation abilities to environmental
chal}enge% These results euggest tha‘r eemi‘rivi‘ry to QA is not limited to species occupying nar-

Fl eva,ted Pcoz can d},smpt tha funcmomng of GAEAA (y-Aminobutyric acid) receptors, the

X3

main inhibitory neurotransmitter receptors in the fish brain [323]. Normally, the opening of
these receptors results in an inflow of C17and HCO, ions over the neuronal membrane, lead-
ing to inhibition of the nenron. When concentrations of intracellular CI” and HCO; are altered
(e.g, when fish with strong acid-base regulatory systems are exposed to higher environmental
P, the flow of ions can be reversed, resulting in neuronal excitation instead of inhibition.
‘iuah changeg have been a%ociated with dramatic shifts in behaviour and «;ensary preferences’
these receptors are shared by many if not most fish, the rasultmgp behaw ioural responses will
lkely vary due to species-specific differences in acid-base regulatory systems [323].
Indirect effects Fish will likely be affected indirectly by OA through food- web interactions.
Off the southern WCVI, the pelagic system is dominated by Pacific Hake, Pacific Herring,
Spiny Dogfish, and Chinook Salmon {Oncorhynchus tshawytscha), all largely dependent on
krill production in the region [3.24]. This area has also been described as a “toxic hot spot” due

to consistently high levels of Pseudo-nitzschia species and the presence of domoif acid ["»Z
These neuro‘mxim are transferred to hio}mr troyhic level

Many ﬁbh species of the north Pauﬁc Ouan prey on sheﬂed pteropods {e.g. cod, pollock,
mackerel) and a dedine in ptempod abundances may 1ead toa shiﬁ' in diet toward greater pre-
x—lnd}reat LffLL,EQ) are

pigmpods often exhibit swarming behaviour, fomgmg costs are rdanvdy low for Pmk Salmon
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adult biomass [327]. Reductions in pteropod densities may therefore have significant impacts
on Pink Salmon biomass (Fig, 44A).

Trophodynamic modelling can suggest possible impacts of OA on fish populations. One
on benthic shelled invertebrates {e.g. bivalves, corals, sea urchins, sea stars} that leads to a bio-
mass reduction for fish that feed on these species. While both English Sole (Parophirys vetulus)
and small demersal sharks {e.g. Spiny Dogfish) rely on these invertebrates for only 10% of their
diet in the model, English Sole experiences a much bigger decline due to alack of alternative
and small phytoplankton, which leads to a large increase in microzooplankton, detritus, and
bacteria. In this scenario, the model predicts various higher-order interactions: a reduction of
Lingcod due to @ decline in macrozooplanktonic prey; an increase in Canary Rockfish (Sebastes
pinniger) due to an increase in sea urchins and shrimps; and the increase of nearshore rockfish
due to a decline in one of its predators, Lingcod. While there are many possible outcomes using
such modelling tools, they do highlight how effects from OA on any single biclogical compo-
nent can affect the entire trophic web.

Fish synopsis In general, we expect that adult fish will be tolerant of OA because of their
ability to control internal ion concentrations. However, QA may affect fish during vulnerable
developmental stages, though evidence for these effects is weak for species in BC. Perhaps
more importantly, behavioural responses to OA have been widely documented in tropical reef
fish, resulting in reduced survival. Similar effects may occur in temperate species, though stud-
ies in this area are limited. OA-induced reductions in availability of some prey species may re-
duce fish growth and survival, though these effects may be tempered by prey-switching.
Possible increases in HABs would have a negative impact on farmed fish and shelifish; wild fish
might increasingly suffer the effects of biotoxin accumulation.

Marine mammals

many of which have experienced dramatic population increases over the last century when
hunting and culling practices were discontinued (e.g. on Grey Whales (Eschrichtius robustus)
In addition to their role as top predator
in the marine food web and their contribution to ecotourism, these mammals are iconic sym-

and Harbour Seals (Phoca vitulina), respectively) [3341.

In general, marine mammals cover an appreciable geographic range and many are able to
dive to remarkable depths [332]. Their physiology is adapted to high pressures and they have
an exceptional capacity for O, |

Marine mammal synopsis Marine mammals will likely be affected by OA indirectly

through food web changes, however direct impacts are not anticipated. While noise levels will
increase with OA, this increase will not be large enough over the next few centuries to affect an-
imals that rely on underwater sound.
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Discussion

We have described the marine ecosystem in the temperate coastal northeast Pacific region at
present, and then its response to OA. However, the available information is limnited. For some
Cabile). In general there are
more studies, with respect to distributions and OA impacts, on species that are easier to ob-

te) or that threaten human health (e.g. harm-
g}. The results of studies like these are often adopted when similar research on

organisims, no OA studies exist (e.g. Geoduck Clam, rockdish, 51

serve, are of commercial value (e.g. oysters, §

native organismus is not available (as we have done), limiting the ability to predict responses
with confidence. Furthermore, OA is only one aspect of climate change and predicting shifts in
marine ecosystems, and the degree to which they are caused by natural or anthropogenic fore-
ing, is a highly complex problem. In the following, we discuss these and other issues that influ-
ence our evaluation.

periments in these studies are highly valuable, translating their results into changes in the real
world is challenging. For example, wild populations of marine organisms will adapt (both
physiclogically in a single lifespan and genetically over multiple generations) to their changing
environment, which is difficult or impossible to capture in vitro. However, using temperature-
changing pH may be limited.

In addition, food-web interactions and responses to OA are extremely difficult to predict,
but will influence marine populations and could tip the balance from an overall negative im-
pact to a positive one for a given species if a key predator is removed. Ecosystem effects result-
ing from OA have previously been identified as a key knowledge gap [337]. Furthermore,
different life stages, particularly the juvenile stage (e.g. echinoderims), often display increased
susceptibility to OA, but the impact of exposure of one life stage to low pH conditions on the

Manipulated experiments generally consider present-day atmospheric conditions
{~360-400 patm) to be the control Prg, level and all treatments above that to be ‘clevated’.

of the four carbon parameters (DIC, TA, Py, pH) be measured. The quality of the measure-

ments and manipulation in the laboratory work cited here is variable. While the high degree of
obtain insight from biclogical manipulation experiments, the equations that define the carbon
system lead to compounding errors when calculating one of the unknowns. Thus, a moderate
uncertainty in Pog, may translate to an estimated pH that has little, or no meaning. We urge
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been summarised.

Climate change—the whole picture The ocean has absorbed a significant portion of the
anthropogenically produced carbon [2] and that has caused on average a 30% change in surface

ocean acidity [5]. However the annual variability in surface Pro, and pH in dynamic regions

than the annual atmospheric increase in CO,. In other words, we expect the OA trend to be
present, but overlaid is a signal with large amplitude.
Climate change may alter this dynamic natural cycle so that negative impacts associated

with high acidity are experienced earlier in the coastal northeast Pacific than elsewhere, regard-
less of OA. There are critical times during the year when carbon conditions (particularly in the
upper mixed layer; 20~30 m on the outer coast; ~ 10 m or less in protected waterways) change
dramatically. For example, the spring bloom in the Strait of Georgia canses a large and rapid in-
crease in surface pH (Ben Moore Maley pers. comm., University of British Columbia, Vancou-
shelf, the onset of summer upwelling brings lower pH water over the continental shelf and de-
creases pH (on average) throughout the entire water column. Climate change may alter the
ence of climate change on weather may play a critical role, that will only be exacerbated as

OA progresses.

In addition to changing weather, sea surface temperatuares are expected to increase and sub-
surface O, is expected to decrease (leading to increased occurrence of hypoxia) with climate
change, concurrent with OA. Temperature has a large effect on marine organisms because me-
tabolism increases as the ocean warms, consequently increasing energetic costs. As a result,
changes in present-day distributions of marine organisms have already been linked to changes
of climate change on marine organisms. The net effect of all three stressors (warming, hypoxia
and OA) may be synergistic and has been generally described as a narrowing of the thermal

Conclusions

There remain significant knowledge gaps with respect to the biological impacts of OA on ma-
rine ecosystems globally, and locally. The most critical impacts will likely be indirect as a result
of food web changes, and so are highly complex and difficult to predict even with extensive
study. Furthermore, OA related changes will occur in concert with other climate change im-
pacts that may be even more severe {see above). In particular, increasing temperature and de-
creasing dissolved oxygen are lilely to produce synergistic effects.

The northeast Pacific region naturally has waters low in pH (undersaturated with respect to
aragonite) near the surface. Thus, it is potentially more vulnerable to OA than other regions.
We summarise the most relevant risks and identify key knowledge gaps, given present-day
knowledge, to Pacific Canadian fisheries and marine ecosystems in the order of immediacy
and certainty.

» Shellfish aquaculture is highly susceptible to OA due to the direct impact of OA on shell for-

mation and the dependence of the industry on hatchery production. These impacts are al-
ready experienced in BC (and WA). Wild shellfish experience similar difficulties but have the
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» There are no studies on Geoduck Clams, which are responsible for a lucrative wild fishery
and a growing aquaculture industry in BC (although the latter is still in its infancy).

« The commercial BC fishery is dominated monetarily by salmon aquaculture. While uncer-
tainty remains low, it is anticipated that the fish-killing alga Heterosigma akashiwo will gain a
competitive advantage under OA, making blooms more frequent. Such blooms are already a
significant issue for this industry in BC.

®

Neurotoxins produced by other harmful algae are expected to become more potent under
OA. Such blooms already cause shellfish closures in BC. If this increase in toxicity occurs, the
shellfish industry will be affected. In addition, these toxins may cause decreased reproductive
success, and even mass mortality, at higher trophic levels including fish, seabirds and

marine mammals.

®

Food web changes due to OA (e.g. in BC changes in the species composition of phytoplank-
ton and decline of pteropods) are anticipated but remain unknown, as are the impacts of
these lower level changes on higher trophic levels.

®

Finfish are likely to experience QA impacts through foodweb changes. In BC examples in-
clude: the decline of pteropaods, that are directly preved upon by some fish (particularly Pink
Salmon), and the anticipated decline of some echinoderms, that are eaten by various species
of rockfish and flatfish.

®

Habitat changes may also have a critical negative impact, in particular for juvenile fish.
While these impacts remain highly uncertain, there may be a shift from upright macroalgae
to algal turf. Also, local coral species (in BC primarily octocorals) that provide vertical struc-
ture may decline. Direct impacts of OA on finfish may also cocur, but only at relatively high
levels of CO..

L3

There are few direct OA studies on local finfish species and none on Pacific Halibut and
salmon, which drive the sport fishing industry. Similarly there are no studies on the adapta-
tion of these local species to OA and multiple stressors, like temperature and O,, that will be
changing at the same time. Because sport fishing dominates fishery related income in BC,
this knowledge gap is significant.

» Behavioural changes at various trophic levels have been observed (e.g. increased downward
swimming in phytoflagellates, decreased detection and avoidance of predators in larval fish)
and postulated (e.g. increased movement to OA refugia such as eelgrass meadows). Such
behavioural changes might alter the structure of marine communities in BC, and present an-
other knowledge gap.

» Crabs may experience negative impacts under OA while other crustaceans significant to the
harvest fishery in BC, like prawns, have not been well studied but appear to be more
strongly sensitive to temperature than OA. In general, the juvenile stages of crustaceans are
most vulnerable to OA, growing more slowly because they need to expend more energy
under OA.

Supporting Information

51 Table. Wumber of articles by Group of Organisms. Number of hits by Web of Science for
OA-related studies on different groups of animals in March 2013 and March 2014.
(PDE)
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§2 Table. Experimental details for manipulation experiments. The experimental details for
all manipulation experiments referred to in this document.
(PDF)

§3 Table. Environmental details for in situ studies. Details (e.g. species, location, and carbon
state) for OA-related im situ studies of marine organisms.

{PDF)

51 Text. Pacific Region Animal Use Protocols. Marine animal use protocols in British Co-

lumbia, Canada.
(PDF)

(R)

82 Code. R-code to create Fig. 2. The code includes the data required to generate the figure.
(R)

(R)
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